CHAPTER 1

Collaborative Writing,
Software Development,
and the Universe of
Collaborative Activity

DAVID K. FARKAS

In recent years, collaborative writing has become a significant area within the
discipline of composition studies, and it is now receiving a good deal of attention.
We should remember, however, that collaborative writing is not simply a form of
writing. It is also one of innumerable forms of human collaborative activity. Just
as people collaborate to prepare documents, so do they collaborate to build
bridges, climb mountains, govern communities, and perform innumerable
other tasks.

Much of the time collaborative activity is carried out transparently and with
little or no difficulty. A husband and wife prepare the family breakfast and have
no thought that they are engaged in a collaborative task, Other collaborations
are complex and difficult affairs in which the need to coordinate the activity of
a group of individuals is 2 prominent consideration. One of the broad theses of
this chapter is that collaborative writing is one of these complex and difficult
forms of ¢ollaboration.

The second broad thesis of this chapter is that collaborative writing has much
in common with other forms of collaboration. All forms of collaboration, for
example, require participants to develop a common understanding of their goal

13



14 / COLLABORATIVE WRITING IN INDUSTRY

and methods and to coordinate their efforts toward achieving that goal. But, of
course, collaborative writing is much closer to some classes of collaborative
activity than to others.

The third broad thesis is that we can learn a great deal about collaborative
writing by looking at other forms of collaborative activity, both by observing it
directly as it occurs all around us and by adopting and adapting insights and
methodologies from disciplines that in various ways address the problem of
human collaboration.

My procedure in this chapter is

1. to demonstrate, by means of comparisons with other collaborative
activities, why collaborative writing is difficult and to point out that the
difficulties in collaborative writing are not unique but rather are shared
with broad classes of collaborative activities, and

. to look closely at one particular collaborative activity—software develop-
ment—and show how software development can contribute to the
understanding and improved practice of collaborative writing and what it
has contributed already.

[

Before proceeding further, I will offer a definition of collaborative writing
that consists of four basic forms of writing, along with all possible combinations:

. two or more people jointly composing the complete text of a document;

. two or more people contributing components to a document;

. one or more persons modifying, by editing and/or reviewing, the document
of one or more persons; and

4. one person working interactively with one or more persons and drafting a

document based on the ideas of the person or persons.

(VS

While this chapter applies in at least a general way to all forms of collaborative
writing, T most often refer to and I implicitly assume a combination of Forms 2
and 3, a situation in which two or more persons contribute components of a
document and one or more persons review and/or edit the document. I de-
emphasize Form 4 because it is a somewhat marginal instance of collaboration
in that one person is doing all of the actual drafting. I de-emphasize Form 1
because it is less often practiced than the other forms of collaborative writing.
Joint composing vastly reduces writers” productivity; the two (or more) writers
perform the work of one and, in fact, often produce less material than one
writer would, Also, joint composing frequently results in a great deal of disagree-
ment and irritation over individual choices in diction and syntax. This form of
collaborative writing is, in fact, primarily useful in situations when the document
is short, when agreement on exact wording is crucial, and when there is need to
eliminate what would otherwise be an extended round of reviews and edits
among the collaborators.



COLLABORATIVE ACTIVITY-WRITING/SOFTWARE DEVELOPMENT / 15

WHY IS COLLABORATIVE WRITING DIFFICULT?

Collaborative writing #s difficult, 1 think our collective experience tells us
that. Also, the literature supports this idea {1,2]. Below I offer six reasons why:

1. Highly integrated documents are very complex artifacts.

2. The process of preparing a document becomes more complex when it is
performed collaboratively.

3. The writing process generates strong emotional commitments.

4. Documents are reworkable and are subject to infinite revision.

3. Collaborative writers lack fully adequate terms and concepts with which to
create a clear and precise common image of the document they wish
to produce.

6. It is difficult to predict or measure success.

These six reasons are derived only on an ad hoc basis, not from a comprehen-
sive theory of collaborative writing. None exists. Others studying collaborative
writing, therefore, can create a somewhat different list. This list, however, as it is
developed below, does articulate much of the difficulty in collaborative writing.
In addition, it reveals numerous points of contact between collaborative writing
and other collaborative activities.

1. Highly Integrated Documents Are
Very Complex Artifacts

Obviously, not all the artifacts produced by collaborative work are complex.
A group of children, for instance, will make a crude snow figure consisting of
little more than three balls of snow. Any document, however—even a short,
routine business letter—is a moderately complex artifact, a web of words that
have been chosen on the basis of syntactic, semantic, and pragmatic considerations.

Greater complexity begins to come in longer documents that convey large
amounts of information. A requirement for truly great complexity is the high
degree of integration—the myriad and complex linkages—among the components
of a large document. This integration can take the form of a carefully developed
theme or a carefully orchestrated emotional impact that builds and modulates
through a long document. It can also take the form of an elaborate system for
presenting reference information—for example, a sophisticated reference manual
that at each topic in the document directs the reader to all the other places
where related information is to be found.

In contrast, there are documents characterized by fairly discrete components
and, hence, 2 “loose” form of collaboration. This category includes a technical
report containing sections individually researched and authored by scientists
who only coordinated on a few matters. While each section bears upon the
overall topic in an appropriate way, the format, organization, depth of treatment,
and perhaps even the approach differ from section to section. Such documents



22 / COLLABORATIVE WRITING IN INDUSTRY

Ensemble musicis a collaborative activity in which the medium, like language,
is subtle and elusive. Also, apart from the technical aspects of music, the terms
and concepts musicians work with are highly metaphorical and lacking in
precision. Most important, each musician, while engaging in a very personal and
expressive form of communication, must blend his or her individual voice into 2
group product. In the case of orchestral music, the score largely constrains the
choices of the individual musicians, but a conductor & still emploved to coor-
dinate aspects of the musicianship. In the case of improvisational music, such as
jazz, each performer proceeds with considerable autonomy but must maintain
ongoing communieation with the others. The very frequent success enjoyed by
ensemble musicians of all kinds indicates that there is much in their methods and
traditions to be carefully examined by those with an interest in improving
collaborative writing.

Another collaborative activity that should be studied is software development
along with its associated discipline, software engineering. In this instance,
however, I will do more than glance at its relevance to collaborative writing.
Rather, the nature of the contribution that software development can make, and
has already made, is the subject of the second part of this chapter.

SOFTWARE DEVELOPMENT

Software Development and Collaborative Writing

Although computer programs are produced by individual programmers, most
commercial software is sufficiently large to require a team of programmers.
Software development, therefore, is by and large a collaborative activity.

As a collaborative activity software development has significant similarities
to collaborative writing. First of all, programmers, like writers, create long and
complex strings of language-—computer code. The language of programmers, of
course, is a formal rather than a natural one, and its primary “audience” is a
group of electronic components. But the electronic components, like human
beings, make demands upon the language they deal with, and because the
components require logic and coherence, each programmer’s part must fit
properly into the whole. Furthermore, computer code must be readable not only
by electronic components but by human beings as well. Otherwise, it is
impossible for members of programming teams to work with each other’s code
or for finished programs to be maintained by other programmers at 2 later date,
Programmers, in fact, speak about good and bad programming “stvle” in some-
what the same way that writers do [13, 14].

Software development also faces many of the same difficulties that collab-
orative writing does. In fact, if we adapt the list of six difficulties in collaborative
writing to software development, we get a meaningful picture of the similarities
and differences between the two,



3]

COLLABORATIVE ACTIVITY-WRITING/SOFTWARE DEVELOPMENT / 23

. Large computer programs are very complex artifacts and are highly prone, at

least initially, to failure,

. Because large computer programs are produced collaboratively, the process

itself is extremely complex and fraught with difficulty. The work, first of all,
must be decomposed among the programmmers, and action must be taken
continually to correct for divergences from the common image. In contrast to
writing, software project leaders can specify this image precisely, but, as
Edward Yourdon notes, wherever the specification is incomplete, individual
programmers will tend to make individual design decisions [15, p. 150].
Furthermore, as Yourdon notes again, “communication problems between
programimers become unmanageable on large projects” {15, p. 150].

. Programmers, like writers, form strong emotional commitments to their

work. They become committed to their own programming techniques and the
code they produce. Furthermore, they tend to regard their segments of code
as “private masterpieces” rather than as part of a group product [15,p. 172].

. Like writing, code is infinitely reworkable and like writing is subject to

successive reworking. Managers and customers change specifications, and
developers must struggle to keep the project on schedule and within budget
and to maintain conceptual integrity [16,pp. 151-240}.

.In clear contrast to collaborative writing, software development enjoys

precise terms and concepts. This precision extends in many cases to the
language of mathematics. These termsand concepts enable software developers
to clearly and precisely specify what they wish to create.

. In contrast to the situation faced by writers, software developers receive.

feedback that is objective. This feedback, however, is only somewhat more
readily obtainable than the feedback writers seek through usability testing.
If there are major flaws in the coding, if—let us say, serious incompatibilities
have been introduced at the last minute —these flaws become readily apparent,
because the program will crash. On the other hand, subtler problems conceal
themselves deep within the code; and if not discovered and corrected through
a process of rigorous software testing, they will reach the user in the form of
a “buggy” product.

The Discipline of Software Engineering

The difficulty in creating large computer programs became increasingly

apparent in the 1960s, and led to the emergence of a new discipline devoted to
the support of software development. This discipline is software engineering.
Utilizing engineering methodology, management theory, and findings from
psychology, software engineers attempt to improve the efficiency with which
computer programs are designed, written, tested, and maintained, Because
inefficiencies in large software development projects are so expensive and so
visible, software engineering is an active, well-funded discipline.



24 / COLLABORATIVE WRITING IN INDUSTRY

Because software development is a collaborative activity, software engineering
is in large part the study of human collaboration in a particular setting. So, for
example, Frederick Brooks’ Mythical Man-Month is both a pioneering work in
the field of software engineering and a classic study of human collaboration [4].
As we will see, collaborative writing has already benefited significantly from
some of the work done in software engineering, and, can benefit still more. The
aspects of software development and software engineering most relevant are
1) models for software development, 2) tools for collaboration, 3) metrics, and
4) visibility and access to resources.

Models for Software Development

Programming teams employ conceptual models to develop software. These
models have close analogs to collaborative writing. The classic model is “top-
down design.” The first steps are to ascertain system requirements, perform
top-level design, and then perform successively more detailed design. When this
planning process is complete, programmers write their components of the
program. The completed components are then integrated into a whole, and the
program is tested in order to determine if further work is necessary. One criticism
of this modelis that it remains a set of abstract plans for too long. Consequently,
many developers modify the model by calling for “draft” versions of each
component midway through the development process. These components are
tested and evaluated, so that more “proven” versions of each component are
available for integration into the whole [17, pp. 22-25].

“Rapid prototyping” is a model that requires less detailed preliminary
planning. Instead it calls for the rapid and inexpensive development of a partly
functional prototype that has the “look and feel” of the finished product. This
prototype is evaluated by users and then refined by the programmers in successive
cycles until the program is complete. The advantage of this more casual
approach to software development is that users get to critique early versions of
the program before the design has solidified [18, pp. 26-27].

Another model is “structured design” {15, pp. 86-100]. Its underlying
concept is “modularity.” Modularity, however, is a broad concept that pervades
many models of software development. The idea behind modularity is to reduce
the overall complexity of a program by breaking it down into a set of semi-
discrete units whose relationships with one another are fairly easy to define. This
contrasts to “spaghetti code,” in which any segment of code can have
connections to any other segment.

Other models focus upon the collaborative arrangements of the development
team. Among these is the “chief programmer team” model. Here one very
superior programmer does all the critical programming on a project, but has
a very complete support staff-assistant programmers, an administrator, software
testers, and so forth—that enables her to get a large job done in a reasonable



COLLABORATIVE ACTIVITY-WRITING/SOFTWARE DEVELOPMENT / 25

length of time. The idea is to reduce the complexity of the software development
process by drastically reducing the amount of communication and coordination
thatisnecessary among team members and to ensure that at least one person has a
complete grasp of the project. One major problem with the model, however, is that
only relatively small projects can be undertaken with this method [4, pp. 29-37].

A very different model focusing on collaborative arrangements is that of the
ego-less programming team. Here the goalis to achieve synergism and to eliminate
the problems caused by emotional commitments, including the tendency to view
one’s work as a “private masterpiece.” In an ego-less programming team, for
example, team members have free access to cach other’s code. In addition,
objective discussion of each person’s work is formalized through the use of
special meetings known as “walkthroughs.” The group rather than individuals
assumes responsibility for the success of the project, and the emphasis is on the
achievement of the team rather than individual contributions [15, pp. 171-172].

All of these models have analogs in writing. Top-down design is akin to
having a writing team develop and agree upon the top-level entries of an outline
and then proceed to lowerdevel entries. It might include drafting preliminary
versions of chapter introductions and other highdevel components. One
conception of how to apply rapid prototyping to the domain of writing is for
the writers to produce a quick rough draft or even a dictaphone recording of
representative sections of the document and solicit comments from managers or
trial readers before refining the design.

Modular documents do exist—catalogs and collections of abstracts are
examples. Indeed, although modularization can only be used in certain
communication situations, the approach simplifies the collaborative process
vastly, so much so that early on in this chapter modular documents were
classified as a nonproblematic form of collaborative writing.

There have no doubt been innumerable instances in which collaborative
writing has been carried out very approximately along both the model of the
chief programmer team and the ego-less programming team--certainly there are
times when it is desirable and feasible to simplify collaborative writing using the
marginal Form 4 described at the beginning of this chapter, and certainly it is
often desirable to attempt to inculcate team spirit among the group of writers
and to appropriately channel the strong emotional commitment generated by
the writing process. But here is the key point: because of the work of software
developers and software engineers, these software development models have
been carefully formulated and debated, systematically applied, and empirically
studied. There is a highly analytical literature that describes these models and
their underlying concepts and explains and debates their merits and deficiencies.
On the other hand, the analogs in collaborative writing are far less carefully
developed and less often studied. They exist primarily in the collective experience
of individual writers and writing team leaders. The literature is scant and very
often anecdotal,



26 /| COLLABORATIVE WRITING IN INDUSTRY

Collaborative writing may require its own distinct development models, but
there is certainly much to be borrowed from the models of software develop-
ment and the analytical literature that accompanies them. Of note in this regard
are Ronald Guillemette’s rationale for adapting rapid prototyping to documenta-
tion writing [19] and Edmund Weiss’ plan, which incorporates a variety of
software engineering concepts, for preparing computer documentation using a
modular format that both satisfies the information needs of readers and simplifies
the collaborative writing process [20].

Computer Tools for Collaboration

Because collaborative writing and software development are very complex
processes, both writing teams and programming teams face the challenge of
keeping track of what has been produced, ensuring that changes are made only
by those with authorization, and making the most current version of the product
(as well as earlier versions) available to all who need to view it. Software
developers are tool-builders, and since the 1960s they have been creating and
refining a whole class of tools for this purpose [4, pp. 132-133]. These “con-
figuration management” tools are the computer equivalent of a project librarian.
If, for example, a programmer wants to see the most recent version of a segment
of the project code, the computer delivers it, indicates by whom and when the
last revisions were made, and can even display just those lines in which changes
were made,

These tools have now migrated into the world of technical publications, and
the most sophisticated electronic publishing systems now possess elaborate
configuration management capabilities [21, 22, 23]. These capabilities are
beginning to appear on microcomputers, both as advanced features of high-end
word processors or as separate products. In this form, they will soon be available
to almost everyone who engages in collaborative writing.

Software developers, especially those working in research environments, have
also devised a broader range of tools to support their activities and to advance
our understanding of collaborative work. There are very interesting noncom-
mercial systems which facilitate faceto-face meetings [24, 25] and which
facilitate meetings among people working at different locations {26,27]. There
are also systems designed to facilitate collaborative writing in new ways.
Neptune, for example, is an experimental hypermedia system that enables the
members of writing teams to share text across a network and, more significantly,
to manipulate and view this pooled material in ways that help them visualize the
emerging document [28]. The practice of collaborative writing will certainly
improve as these tools are refined and commercialized. In the meantime, the
computer science literature contains articles describing these tools, the
theoretical assumptions they embody, and the findings of experiments that
involve their use. This Hterature provides valuable insights concerning both
collaborative writing and collaborative work in general.



COLLABORATIVE ACTIVITY-WRITING/SOFTWARE DEVELOPMENT / 27

Development of Metrics

Software engineers have developed metrics, appropriate measurements, that
they use to better understand and plan their work. A very crude but useful
metric is the size of the project measured in lines of code. It is helpful, for
example, to know that the program you are about to produce is estimated at
20,000 lines of COBOL code. Another crude metric is programmer productivity
measured in lines of code per unit time. The inadequacy of these metrics,
however, is easy to see: one 20,000 line program may be much more complex
to write than another, and one programmer may write 300 lines of easy code in
a day whereas another may produce 50 lines of very difficult code. Software
engineers, therefore, have developed very sophisticated, often highly mathe-
matical, metrics that give them a much more precise understanding of the nature
of a software development project [29, 30].

Writing teams understand and use both the metric of document length and
the productivity metric of pages produced per unit time. But we need to develop
more sophisticated metrics in order to better plan and schedule writing projects
and to distribute the workioad more evenly and with more attention to the
special abilities of individual writers.

We would benefit from predictive metrics that measure the writer’s familiarity
with the source material or the amount of time the writer will spend getting
information from technical experts. Other predictive metrics might measure
structural characteristics of an unwritten document, based on an outline or an
understanding of its organization. For example, a metric that indicated the
degree of interrelatedness of the parts of a document would help predict how
quickly the writing would go, what the likelihood was of leaving out necessary
information, how the document should be decomposed among a team of writers,
and which components should go to the most capable members of the team,

Software engineering has something to contribute to the development of
sophisticated metrics for writing. To begin with, we can look to software
engineering for hints as to what sorts of metrics are desirable and how to develop
them. The applicability of software metricsis, of course, limited by the difference
between formal and natural language and the fact that the primary audience for
code is not a human being. Consequently, metrics for writing will be based
largely on concepts of language and discourse that will be drawn from linguistics
and rhetoric and an understanding of composing processes and reading processes
that will come from psychology. But software engineering metrics may provide
the mathematical relationships that turn distinctions about language and an
understanding of psychological processes into useful quantitative measurements.

Visibility and Access to Hesources

Although professionals in many fields do some incidental programming,
almost all large software development projects are created by full-time program-
mers. Software development, therefore, has become a distinct profession.



28 / COLLABORATIVE WRITING IN INDUSTRY

Furthermore, the profession has been successful in achieving visibility and
gaining access to resources. Corporations and government agencies fund research
in software development, and indeed the discipline of software engineering has
emerged to support this activity. Corporations and other producers of software
have recognized the importance of programmer productivity and quality soft-
ware, and hire consultants and seminar instructors to help them create an
appropriate environment for software development. Books such as Paul Licker’s
The Art of Managing Software Development People serve the same function,
explaining to managers that programmers have specific needs and require
specialized management structures and procedures {31].

On the other hand, although collaborative writing is an all pervasive activity
practiced throughout the professional world, it is largely invisible. This is
because it is primarily practiced as an ancillary activity by bankers, marketers,
chemists, social workers, and so forth. In many instances, the wasted time and
energy, the animosities that have arisen, and even the poor quality of the
finished document are forgotten shortly after the project has ended. The full-
time collaborative writing professionals, primarily technical communicators and
other corporate publications professionals, make up only a small contingent.
Furthermore, in the nation’s English departments, the primary home for the
study of writing, the concern with collaborative writing is only recent.

The main theme of this chapter is that collaborative writing is difficult,
that its difficulties are largely shared with other activities, and that we can look
at these activities and profit. Looking at software engineering, one thing we
learn is the need to teach about collaborative writing as well as study it. We
need to ensure that writing teams have adequate visibility and access to
resources.

Corporations should come to realize that writing, especially in groups, is a
complex and delicate process and that special management procedures are
necessary. For example, the document review process should be conducted with
sensitivity to the burden it places on writers, and special procedures, such as
some variation on the ego-less programming team model should be adopted.
Corporations should also recognize the need for special resources, such as
specialized computer equipment and the time and money necessary for usability
testing. Finally corporations and government agencies should realize the value of
well-funded research in the area of collaborative writing.

Academics and practitioners working together should be able to achieve a
noticeable effect in the corporate world. But whatever our degree of success over
the near term, the recent trend toward emphasizing collaborative writing in the
schools is very promising. If this trend continues and strengthens, we can expect
future generations of professionals to understand more about the practice of
collaborative writing and to give it greater support within their organizations.
This iz important, for it will help create a more productive and congenial
workplace.



w1

10,

11,

12.

13.

14,

COLLABORATIVE ACTIVITY-WRITING/SOFTWARE DEVELOPMENT / 29

REFERENCES

. L. S. Edeand A, A Lunsford, Why Write . . . Together: A Research Update,

Rhetoric Review, 5:1,pp. 71-77, 1986,

. J. Paradis, D. Dobrin, R. Miller, Writing at Exxon ITD: Notes on the Writing

Environment of an R&D Organization, in Writing in Nonacademic Settings,
L. Odell and D. Goswami (eds.), Guilford Press, New York, 1985,

. 3. Gall, Systemantics: How Systems Work and Fspecially How They Fail,

Pocket Books, New York, 1976,

. F.B.Brooks,Jr., The Mythical Man-Month: Essays on Software Engineering,

Addison-Wesley, Reading, Massachusetts, 1975,

. D. K. Farkas and N. J. Farkas, Manuscript Surprises: A Problem in Copy

Editing, Technical Communication, 28:2, pp. 16-18, 1981,

. D. K. Farkas, The Concept of Consistency in Writing and Editing, Jowrnal of

Technical Writing and Communication, 15:4, pp. 353-364, 1985,

. E. Gold, Don’t Let the Approval Process Spoil the Book, Simply Stated, 49,

pp. 1-2, September 1984,

. G.M. Schumacher and R. Waller, Testing Design Alternatives: A Comparison

of Procedures, in Designing Usable Texts, T. M. Duffy and R. Waller (eds)),
Academic Press, New York, 1985,

. P. Wright, Is Evaluation a Myth? Assessing Text Assessment Procedures, in

The Technology of Text, Volume 2, D. H. Jonassen (ed.), Educational
Technology Publications, Englewood Cliffs, New Jersey, 1985.

J. M. Lauer and J. W. Asher, Composition Research: Empirical Designs,
Oxford University Press, New York, 1988,

J. Syer and C. Connolly, Sporting Mind Sporting Body: An Athlete s Guide
to Mental Training, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

S. Doheny-Farina, Writing in an Emerging Organization: An Ethnographic
Study, Written Communication, 3:2, pp. 158-185, 1986,

B. Shneiderman, Software Psychology: Human Factors in Computer and In-
formation Systems, Winthrop Publishers, Cambridge, Massachusetts, 1980.
B. W. Kernighan and P. J. Plauger, The Elements of Programming Style,
McGraw-Hill, New York, 1978,

. E. Yourdon, Managing Structured Techniques: Strategies for Software

Development in the 1990 %, 3rd Edition, Yourdon Press, New York, 1978.

. W. L. Bryan and 8. G. Siegel, Sofrware Product Assurance: Techniques for

Reducing Software Risk, Elsevier, New York, 1988,

. M.W. Evans and J. Marciniak, Soffware Quality Assurance and Management,

John Wiley and Sons, New York, 1987,

. L. 8. Levy, Taming the Tiger: Software Fngineering and Software Econom-

ics, Springer-Verlag, New York, 1987.

. R. A Guillemette, Prototyping: An Alternative Method for Developing

Documentation, Technical Communication, 34:3, pp. 135-141, 1987,

. E. H. Weiss, How to Write ¢ Usable User Manual, 18] Press, Philadelphia,

1985,

1. R. A. Grice, Using an Online Workbook to Produce Documentation,

Technical Communication, 304, pp. 27-29, 1983,



/ COLLABORATIVE WRITING IN INDUSTRY

3 K. Nichols and L. Duggan, Sharing Common Source Files for Documents:

The Agony and the Ecstasy, Proceedings of the 35th International Tech-
nical Communication Conference, Philadelphia, May 1988, Society for
Technical Communication, Washington, D.C., pp. ATA 137-140, 1988,

 Introducing Change Control™, Context Corporation, Beaverton, Oregon,

1987.

. M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman,

Beyond the Chalkboard: Computer Support for Collaboration and Problem
Solving in Meetings, Communications of the ACM, 30:1, pp. 32-47, 1987,

. M. Begemen, P. Cook, C. Ellis, M. Graf, G. Rein, and T. Smith, Project

NICK: Meetings Augmentation and Analysis, Proceedings of the Conference
on Computer-Supported Collaborative Work, Austin, Texas, December
1986, MCC Software Technology Program and the ACM, pp. 1-6, 1987.

. 8. R. Ahura, J. R. Ensor, and D. N. Horn, The Rapport Multimedia Con-

ferencing System, Proceedings of the Conference on Office Information
Systems, Palo Alto, California, March 1988, ACM and IEEE, pp. 1-8, 1988,

. K. Lantz, An Experiment in Multimedia Conferencing, Proceedings of the

Conference on Computer-Supported Collaborative Work, Austin, Texas,
December 1986, MCC Software Technology Program and the ACM, pp.
267-275,1987.

28. N. M. Delisle and M. D. Schwartz, Collaborative Writing with Hypertext,

29.

30.

31

IEEE Transactions on Professional Communication, 32:3, pp. 183-188,
1989,

S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering Metrics
and Models, Benjamin/Cummings, Menlo Park, California, 1986.

B. W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood
Cliffs, New Jersey, 1981.

P. S. Licker, The Art of Managing Software Development People, John
Wiley and Sons, New York, 1987.



